

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

ADVANCED CALCULUS

Course Code: GR15A1002

L:2 T:1 P:0 C:3

I Year I Semester

Prerequisites: Analytical 2-D and 3-D geometry, differential and integral calculus

Course Objectives

- To introduce the techniques of tracing a curve using its geometrical properties.
- To visualize multivariable functions in the context of function optimization.
- To learn the skill of performing integration in 2-D and 3-D and apply them to estimate characteristics of vector fields.

Course Outcomes: At the end of the course, the student will be able to

- Apply the knowledge of curve tracing and geometry to precisely estimate areas and volumes
- Solve problems on function optimization with and without constraints
- Apply the knowledge of multiple integrals in solving problems in vector fields

Unit-I

Differential Calculus of functions of several variables and Function Optimization: Partial differentiation - Hessian matrix-Total differentiation-Jacobians. Optimization of functions of several variables without constraints-Constrained optimization of functions of several variables with equality constraints-The Lagrange's multiplier method.

Unit-II

Curve tracing principles and Applications of integration: Basic principles of tracing Cartesian, polar and parametric curves -Applications of the definite integral to evaluate arc lengths, surface areas of revolution and volumes of revolution.

Unit-III

Multiple integrals and applications: Evaluation of Double integrals in Cartesian and polar coordinates-Changing the order of integration- Change of variables - Evaluation of triple integrals in Cartesian, cylindrical and spherical polar coordinates. Application of multiple integrals to evaluate plane areas and volumes of solids.

Unit-IV

Vector Calculus: Vector differentiation in Cartesian coordinates-Gradient, Divergence and Curl and their physical interpretation-Directional derivatives-Angle between surfaces, Vector Identities, Irrotational fields and scalar potentials. Vector integration-Evaluation of line integrals-Work done by conservative fields-Surface integrals.

Unit-V

Vector Field theorems: Green's theorem in the plane-Divergence theorem of Gauss-Stoke's theorem (Without Proofs).

Teaching Methodologies

- 1. Tutorial sheets uploaded in website
- 2. NPTEL video lectures
- 3. MATLAB exercises for visualization

Text Books

- 1. Advanced Engineering Mathematics: R.K.Jain and S.R.K.Iyengar Narosa Publishing House
- 2. Schaum's outline series on Vector Analysis
- 3. Higher Engineering Mathematics: B.S.Grewal-Khanna Publications

Reference Books

- 1. Advanced Engineering Mathematics: Erwin Kreyszig-Wiley
- 2. Calculus and Analytical Geometry-Thomas & Finney-Narosa
- 3. Higher Engineering Mathematics: B.S.Grewal-Khanna Publications