

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

ANALOG AND DIGITAL ELECTRONICS LAB

Course Code: GR15A2046

L:0 T:0 P:2 C:2

II Year II Semester

Course Objectives: At the end of the course the student is expected

- To design various applications of Operational Amplifier
- To design the wave form generators
- To analyze the oscillators circuits and their working operations
- To implement the ZCD and DC voltage regulator
- To implement the verilog code in the Xilinx Software

Course Outcomes

- Ability to design and conduct simulations and experiments.
- Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
- Ability to identify, formulate and solve engineering problems with simulation.
- Ability to use Operational Amplifier as Multiplexer, Subractor and divider
- Able to use Operational Amplifier to generate sine waveform, Square wave form, Triangular wave forms.
- Able to use Operational Amplifier to as analog to digital and digital to analog converter.
- Ability to use Verilog programs to implement Digital Electronics.

Contents

- 1. Design of Operational Amplifier as proportional Amplifier
- 2. Design of Operational Amplifier as integrator
- 3. Design of Operational Amplifier as differential amplifier
- 4. Design of Operational Amplifier as summation amplifier
- 5. Design of Operational Amplifier for multiplying two time varying signals
- 6. Design of Operational Amplifier for generation of triangle wave
- 7. Design of Operational Amplifier for generation of Square
- 8. Design of Operational Amplifier for generation of sin wave
- 9. 555 timer as basic application of generating train of pulses
- 10. 555 timer as speed sensor / frequency to Voltage Converter
- 11. Design of Operational Amplifier as D/A converter
- 12. Design of Operational Amplifier as V/f to F/v converter
- 13. All gates using Xilinx software with Verilog code
- 14. 7800 series & I C's and their applications
- 15. Combination circuits
- 16. Multiplexer and De multiplexer
- 17. Flip Flops implementation using Xilinx Software
- 18. Introduction to logic gates using Xilinx in Cool runner CPLD board