

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

DATA STRUCTURES

Course Code: GR15A1010

I Year II Semester

L:2 T:1 P:0 C:3

Prerequisites: Intermediate programming in a high-level language and introduction to computer science. Topics include program structure and organization, data structures (lists, trees, stacks, queues) C is the principal programming language.

Course Objectives

- Understanding of the behaviour of basic data structures (lists, stacks, queues, trees).
- Be familiar with writing recursive methods
- Ability to analyse a problem and determine the appropriate data structure for the problem.
- Understand the importance of data modelling and data structures in advanced programming.
- Understand and analyse elementary algorithms: sorting, searching and hashing.

Course Outcomes

- Student will be able to choose appropriate data structure as applied to specified problem definition.
- Student will be able to handle operations like searching, insertion, deletion, traversing mechanism
- Students will be able to apply concepts learned in various domains like DBMS, compiler construction etc.
- Students will be able to use linear and non-linear data structures like stacks, queues, linked list etc.

Unit-I

Introduction to data structures: Stacks, Stack Operations, Representation of a Stack using Arrays, Stack Applications: Recursion, In fix to postfix Conversion, Evaluating Arithmetic Expressions.

Unit-II

Queues Basic Queues Operations, Representation of a Queue using array, Implementation of Queue Operations using arrays, Applications of Queues, Enqueue, Dequeue, Circular Queues, Priority Queues.

Unit-III

List Introduction, single linked list, representation of a linked list in memory, Operations-insertion, deletion, display, search, Circular linked list, Double linked list, applications Advantages and disadvantages of single linked list, arrays, Implementation of stack, queue using linked list.

Unit-IV

Trees Basic tree concepts, Binary Trees: Properties, Representation of Binary Trees using arrays and linked lists, operations on a Binary tree, Binary Tree Traversals (recursive), Creation of binary tree from in-order and pre(post)order traversals.

Unit-V

Sorting and Searching: Insertion (Insertion sort), selection (heap sort), exchange (bubble sort, quick sort), distribution (radix sort) and merging (merge sort) Algorithm, Searching: Linear, binary search, indexed sequential search.

Teaching Methodologies

- 1. White Board
- 2. Marker
- LCD Projector
- 4. OHP Projector

Text Books

- 1. Data Structures, 2/e, Richard F, Gilberg, Forouzan, Cengage
- 2. Data Structures and Algorithms, 2008, G.A.V. Pai, TMH

Reference Books

- 1. Data Structure with C, Seymour Lipschutz, TMH
- 2. Classic Data Structures, 2/e, Debasis, Samanta, PHI, 2009
- 3. Fundamentals of Data Structure in C, 2/e, Horowitz, Sahni, Anderson Freed, University Press