

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

II Year II Semester

Course Code: GR15A2033

L:0 T:0 P:2 C:2

Prerequisites: Fundamentals of Fluid Mechanics and Hydraulic Machinery

Course Objectives

- · To provide practical knowledge in verification of principles of fluid flow
- To impart knowledge in measuring pressure, discharge and velocity of fluid flow
- To understand Major and Minor Losses
- To gain knowledge in performance testing of Hydraulic Turbines and Hydraulic Pumps at constant speed and Head

Course Outcomes

- To provide the students with a solid foundation in fluid flow principles
- To provide the students knowledge in calculating performance analysis in turbines and pumps and can be used in power plants
- Students can able to understand to analyze practical problems in all power plants and chemical industries
- Conduct experiments (in teams) in pipe flows and open-channel flows and interpreting data from model studies to prototype cases, as well as documenting them in engineering reports
- Analyze a variety of practical fluid-flow devices and utilize fluid mechanics principles in design
- Given the required flow rate and pressure rise, select the proper pump to optimize the pumping efficiency
- To provide exposure to modern computational techniques in fluid dynamics

List of Experiments

- 1. Verification of Bernoulli's theorem and draw the HGL, TEL
- 2. Determine the Coefficient discharge of Venturi meter and Orifice meter
- 3. Determine the Darcy's Friction factor in various diameters of pipes
- 4. Determine the Minor Losses (Different Valve connections, Sudden Expansion, Sudden Contraction, Bends, joints) in various pipe fittings
- 5. Determine the coefficient of impact of Jet on given Vanes
- 6. Determine the overall efficiency of Pelton wheel Turbine at Constant Speed and Constant Head
- 7. Determine the overall efficiency of Francis Turbine at Constant Speed and

Constant Head

- 8. Determine the overall efficiency of Kaplan Turbine at Constant Speed and Constant Head
- 9. Determine the overall efficiency of Single Stage Centrifugal pump at Constant Speed and Constant Head
- 10. Determine the overall efficiency of Multistage Centrifugal pump at Constant Speed and Constant Head
- 11. Determine the overall efficiency of Reciprocating pump at Constant Speed and Constant Head
- 12. Determine the Turbine Speed and Flow rate by using Turbine Flow meter

Teaching Methodology

Experimental Test Rigs, Turbines and Pumps