

# GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

#### **MECHANICS OF SOLIDS LAB**

Course Code: GR15A2025

L:0 T:0 P:2 C:2

II Year I Semester

### **Prerequisites**

Fundamentals of Mechanics of solids

## **Course Objectives**

- To provide the knowledge in finding out the strength & hardness of a material with different methods
- To know the mechanical properties of various materials by using universal testing machine.
- To provide the knowledge in finding out the slope & deflection of various types of beams

#### **Course Outcomes**

- To give practical knowledge of testing of strength of materials under application of types of loads.
- To determine safe load of application on various materials
- Apply the fundamental concepts of principle of superposition, equilibrium, compatibility, force-deformation, and stress-strain relationships to the solid and structural mechanics problems
- Analyze determinate and indeterminate bars, beams, and determinate trusses to determine axial forces, torques, shear forces, and bending moments
- Fundamental understanding of the concepts of stress and strain in mechanics of solids and structures and material properties.
- The ability to design structural members given the dimensions, material properties such as force-displacement relationships, boundary conditions, loading, allowable stresses, and factor of safety.

## **List of Experiments**

- To determine the resistance of a material to indentation using Brinnel's Hardness Test
- To determine the resistance of a material to indentation using Rockwell's Hardness Test
- To determine the resistance of a material to indentation using Vicker's Hardness Test
- 4. To determine the rigidity modulus of a spring using Compression Test



- 5. To determine the strength of material in tension using Tension Test
- 6. To determine the strength of material under compression using Compression Test
- 7. To determine the young's modulus of the given structural material using Cantilever Beam
- 8. To determine the young's modulus of the given structural material using Simply Supported Beam
- 9. To determine the young's modulus of the given structural material using Maxwell's Reciprocal Theorem
- 10. To determine the young's modulus of the given structural material using Continuous Beam
- 11. To determine the tensional strength and stiffness of a material using Torsion Test
- 12. To determine the ultimate shear strength of the given structural material using Direct Shear Test.

**Teaching Methodology:** Experimental Test rigs