I B. Tech II Semester Regular Examinations, June, 2015 Numerical Methods

GR 14

(Common to CE, EEE, ME, ECE, CSE, BME and IT)

Time: 3 hours

С

Max Marks: 70

PART – A Answer ALL questions. All questions carry equal marks *****

10 * 2 Marks = 20 Marks

- **1). a** The equation $x^2 + 4x = 7$ has a real root in the interval (1, 2). After two [2] approximations of the bisection method where is the root located?
 - **b** What is the Cholesky decomposition $A = LL^T$ of the matrix $A = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}$? [2]
 - Under usual notations establish the equivalence $\mu = \sqrt{1 + \frac{\delta^2}{4}}$ [2]
 - **d** Estimate the model parameters *a* and *b* in the straight line y = ax + b from the [2] following information: n = 5, $\sum x = 40$. $\sum y = 96$, $\sum x^2 = 164$, $\sum x y = 116$
 - e Estimate the value of y'(0) from the following data

X	0	4	8	12
Y	-3	1	7	19

- **g** What is the value of the definite integral $\int_{-1}^{1} \frac{\sin x + 1}{\cos x + 2} dx$ by Gauss-Legender 2 point rule? [2]
- **h** Estimate y(0.1) by Euler's method given the initial value problem [2] $y' = \frac{\sqrt{x} + \sqrt{y}}{2}, y(0) = 1.44$
- i Write the Stirling's central interpolation formula with 5 data points. [2]
- **j** Write the normal equations for the model $y = ax + \frac{b}{x}$ [2]

Page 1 of 2

CODE: GR14A1004

.....

[2]

PART – B

Answer any FIVE questions. All questions carry equal marks. *****

5 * 10 Marks = 50 Marks

- (a) Use Newton Raphson method to find a real root of the equation 2. [10] $x^{4} + 2x^{2} + 7x = 10.88$ to 3 decimal places.
 - (b) Perform 3 iterations of the Jacobi method to solve the linear system 5x + 2y + z = 6, x + 4y + 2z = 3, x + 3y + 5z = -1

Start with $[1.1, 0.98, -1.02]^T$ as the initial approximation.

(a) Find y(3) by Lagrange's interpolation formula given the following table 3. [10]

x	-2	0	1	4
у	-36	-20	-15	60

(b) Use Gauss Backward Interpolation formula to estimate y(8) given the following table

x	3	6	9	12	15
у	-2	0	4	14	36

(a) Fit an exponential curve $y = ab^x$ to the following data 4.

x	0	1	2	3	4
у	1.250	1.100	0.968	0.852	0.750

(b) Fit a second degree parabola $y = a + bx + cx^2$ to the following data

x	0	1	2	3
у	1.100	6.600	18.700	37.400

5. Determine the cubic spline segment in the range [3,4] for the following data under [10] natural spline conditions

х	1	2	3	4
у	3	10	29	65
1				

(a) Estimate y(0.5) by Taylor's Series Method with h = 0.25 given the initial value [10] 6. problem $y' = 2x^2 + 3y$ subject to the initial condition y(0) = 0.414

(b) Evaluate the definite integral $\int_{0}^{2} \frac{x}{x^{2} + x + 2} dx$ by Gauss Legender 3 point rule

7.

[10] (a) Perform a LU decomposition for the matrix $A = \begin{pmatrix} 2 & -6 & 10 \\ 1 & 5 & 1 \\ -1 & 15 & -5 \end{pmatrix}$

(b) If there are 4 control points, how many B-spline basis functions are required if one has to fit a quadratic B-spline curve? Show the dependency diagram.

[10]

SET - 2

8. (a) Find a real root of the equation x² + 4√x = 8 by Regula Falsi (Perform only 3 [10] iterations) [6]
(b) Derive a customized Newton Raphson Formula to calculate the cube root of a real number N [4]

Page 2 of 2