Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

DATA STRUCTURES

L T P C 2 1 0 3

Sub code: GR14A1010	
I Year IIsem	

Prerequisites:

Intermediate programming in a high-level language and introduction to computer science. Topics include program structure and organization, data structures (lists, trees, stacks, queues) C is the principal programming language.

Course Objectives:

- Understanding of the behavior of basic data structures (lists, stacks, queues, trees) .
- Be familiar with writing recursive methods
- Ability to analyze a problem and determine the appropriate data structure for the problem.
- Understand the importance of data modeling and data structures in advanced programming.
- Understand and analyze elementary algorithms: sorting, searching and hashing.

Course Outcomes:

- Student will be able to choose appropriate data structure as applied to specified problem definition.
- Student will be able to handle operations like searching, insertion, deletion, traversing mechanism
- Students will be able to apply concepts learned in various domains like DBMS, compiler construction etc.
- Students will be able to use linear and non-linear data structures like stacks, queues, linked list etc.

UNIT-I : Indroduction to data structures:**STACKS** Stack Operations, Representation of a Stack using Arrays, Stack Applications:Recursion, In-fix- to postfix Transformation, Evaluating Arithmetic Expressions.

UNIT-II: QUEUES Basic Queues Operations, Representation of a Queue using array, Implementation of Queue Operations using arrays, Applications of Queues, Enqueue, Dequeue, Circular Queues, Priority Queues.

UNIT-III: LIST Introduction, single linked list, representation of a linked list in memory, Operationsinsertion, deletion, display, search, Circular linked list, Double linked list, applications Advantages and disadvantages of single linked list, arrays, Implementation of stack, queue using linked list.

UNIT-IV: TREES Basic tree concepts, Binary Trees: Properties, Representation of Binary Trees using arrays and linked lists, operations on a Binary tree, Binary Tree Traversals (recursive), Creation of binary tree from inorder and pre(post)order traversals,

UNIT-V: SORTING & SEARCHING: insertion (Insertion sort), selection (heap sort), exchange (bubble sort, quick sort), distribution (radix sort) and merging (merge sort) *Algorithms. Searching:Linear, binary search*, indexed sequential search.

Teaching Methodologies:

- 1. White Board
- 2. Marker
- 3. LCD Projector
- 4. OHP Projector

Text Books:

- 1. Data Structures, 2/e, Richard F, Gilberg , Forouzan, Cengage
- 2. Data Structures and Algorithms, 2008, G.A.V.Pai, TMH

Reference Books:

- 1. Data Structure with C, Seymour Lipschutz, TMH
- 2. Classic Data Structures, 2/e, Debasis ,Samanta,PHI,2009
- 3. Fundamentals of Data Structure in C, 2/e, Horowitz, Sahni, Anderson Freed, University Press.